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The problem considered is the approximation of a continuous function defined
on an interval hy polynomials which are monotone nondecreasing there. Upper and
lower bounds on the degree of approximation as well as an asymptotic result are
obtained. 1988 Academic Press, Inc.

1. INTRODUCTION

The problem considered is the approximation of a continuous real
function defined on an interval by polynomials which are monotone non
decreasing there. Upper and lower bounds on the degree of approximation
and an asymptotic result are established. The latter shows that when I is
continuous but not nondecreasing, En(f), the degree of approximation off
by monotone polynomials of degree at most n, converges to a positive
number as n --+ 00 at a geometric rate. The complementary case when I is
continuous and nondecreasing was investigated earlier in the literature.

Let P n denote the class of all nondecreasing polynomials of degree at
most n defined on a real interval 1= [a, b]. Given a continuous function I
on I, not necessarily nondecreasing, the problem of monotone polynomial
approximation is to find a qn in Pn such that 111- qn II minimizes III- Pn II
for all Pn in Pn' where 11·11 is the uniform norm given by I1III =
max{l/(x)l: xEI}. The number En(f), defined by

is known as the degree of approximation of I by polynomials III the
class Pn'
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If f is any bounded function on I, then, analogous to its well-known
modulus of continuity w(f, . ), define two nonnegative functions y and ji by

y(c5) = y(f, c5) = sup{(f(y) - f(x)): x, yE I, °~ Y - x ~ c5}, c5 E [0, I],

ji(c5) = ji(f, c5) = sup{ (f(x) - f(y)): X,yE I, °~ Y - x ~ c5}, c5 E [0, I],

where 1= b - a. The functions y(f, .) and ji(f, .) are called the moduli of
monotonicity, decreasing and increasing, respectively, of f [16]. Clearly,
w = max(,u, ji), and thus ,u and ji give a decomposition of w in this sense.
Also, w =-,u iff is nondecreasing.

Iff is continuous and nondecreasing, then analogous to the well-known
Weierstrass Approximation Theorem, we have En(f) --+ ° as 11 --+ 00. A
bound on En(f), which was obtained by Lorentz and Zeller [7] for such
an f, may be written in the form [16, p. 122]

(1.1 )

where Co is an absolute constant. If, on the other hand, f is continuous but
not nondecreasing, then it is shown in [16] that as 11 --+ 00,

limit En(f) = ! ji(f, l) > 0.

Bounds on EAf) were also established there. These investigations are
pursued further in this article under the sole assumption of continuity off
Our results in Section 3 show that for a fixed continuous f, which is not
nondecreasing, and any fixed positive integer m, the nonnegative number
En(f) -! ji(f, I) is bounded above by

for all n ~ m, where p and clare independent of nand m but dependent on
f and p ~ 2. It is established asymptotically that, for such an f,
En(f) -! ji(f, I) does not exceed

(1.2 )

as 11 --+ 00, where C2 is dependent on f The value of p is given in Section 3.
Our results obviously complement result (1.1) of Lorentz and Zeller since
the continuous function f belongs to complementary sets in the respective
cases. The bound (1.2) clearly implies geometric convergence, viz.,

(1.3)

as 11 -+ 00, for all 0 satisfying p/(p + 1) < 0 < 1 and some A(0) > 0.
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Svedov [15] has obtained the following result for a continuous and non
decreasing j:

(1.4 )

where W2 is the modulus of smoothness of order 2. This improves an earlier
estimate of Lorentz [6, Theorem 12]. To compare (1.1), (1.3), and (1.4) we
simply observe that W2 ~ 2w = 2y and w2(f, lln)/(r --+ 00 as n --+ w.

One of the earlier works on monotone polynomial appoximation is by
Shisha [12], who obtained bounds on the degree of approximation under
various differentiability conditions. (Tchebycheff considered the problem in
1873. See [15].) Subsequently several articles [1, 4, 6, 7, 10, 11, 15, 16]
including surveys [3, 5] have appeared on the topic. Many of these articles
impose conditions stronger than continuity on f Some approximation
problems with constraints appear in [3, 5, 14, 19, 20] and the references
given there.

The problem of approximating a nonmonotone function by monotone
polynomials or functions arises as a curve fitting or estimation problem.
The initial data points j(x), based on experimental observations, may be
nonmonotone because they display certain random variations, but it is of
interest to obtain a monotone fit based on the data. One example is to
determine the failure rate of a complex system from observed failure data
under the assumption that the failure rate is nondecreasing. As a result of
random fluctuations, the probability of the initial data itself being
monotone is small.

2. PRELIMINARIES

In this section we obtain asymptotic bounds for (Z), when k increases
with n in some manner specified in advance. These bounds will be used in
the next section to obtain asymptotic results. We shall use the following
well-known inequalities (see [2] or [8, p. 196]). Let nand k (n>k) be
natural numbers and let

(
n )1/2(n)k( n )n-k

Q(n,k)= 2nk(n-k) k n-k .

Then



and
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G) < Q(n, k) exp C~n -12:+! -12(n ~k) + !} (2.2)

In this section all limits are taken as n --+ CN.

PROPOSITION 2.1. Let <rn>be a real sequence such that limit rn = r,
where 0 < r < 1. Let s ~ t. For each n, let there exist a positive integer k n
satisfying

Define

and

Then,

(:J- I

n= 1, 2, ...

n= 1, 2, ....

(2.3 )

(2.4 )

(2.5)

and

exp(s - t) ~ lim inf Gn ~ lim sup Gn ~ exp( -s + t) (2.6)

(211:r( 1- r)) 1/2 exp(s - t)

~ lim inf H n ~ lim sup H n ~ (211:r(1- r))1/2 exp( -s + t). (2.7)

Proof We first establish (2.6). There are three cases to be considered,
o~ s ~ t, S < 0 ~ t, and s ~ t < O. First consider the case s < 0 ~ t. By
hypothesis, there exists no such that for all n ~ no we have 0 < r n < 1,
1~ rnn +s, and 1~ (1- rn)n - t. By (2.3) we have, for n ~ no,

Taking limits we obtain

(2.8)
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Again (2.3) gives
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Using arguments as above, we have

(l-k /nr- kn

exp( - t) ~ lim inf (1 _ ; nr -k n

. (1- kn/nr- kn

~hmsup (1-r
n
r- kn ~exp(-s). (2.9)

Inequalities (2.8) and (2.9) give the required result (2.6) when s <°~ t. The
other two cases may be considered similarly. Thus (2.6) is established.

To establish (2.7), we observe that n > k n for all sufficiently large n. We
substitute k n for k in inequalities (2.1) and (2.2). Then using (2.4) and (2.5)
we obtain the following for all large n:

( 1 1 1)
exp - -12-n + 12kn + ~ + -12'--(-n---k-n-)-+-:-~

( (k)( k))-1/2< 2n nn 1- nn (Hn/Gnl

Since kn/n -+ r, we obtain

limit(Hn/Gn)= (2nr(1-r))1!2.

This together with (2.6) establishes (2.7). The proof is now complete.

3. MAIN RESULTS

In this section we state and prove our main results.
We first introduce some notation and preliminary results. Let C denote

the space of real continuous functions defined on the interval I = [a, b] and
K the convex cone of real nondecreasing functions on I. Recall that
1= b - a. We observe that iff E C - K, then fi.(f, I) > 0, and by [16, Sect. 4,
Lemma 1], we have

A. = sup{ tJ E [0, I]: w(f, tJ) = fi.(f, I)} > 0.
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If (/J is the class of all Friedrichs mollifier functions ¢ with support in
[0, 1], we let

k= 1, 2, ...,

where ¢(k) denotes the kth derivative of ¢ [9]. The numbers Ak appear in
the main results of [16] and are used in this section. It is shown in
[17,18] that

k= 1, 2, .... (3.1 )

We derive our results from Theorems 2 and 3 of [16]. These theorems
were in turn derived respectively from Theorems 5 and 1 of Shisha [12].
To obtain his Theorem 1, Shisha essentially used the well-known estimate
of Farvad and Ahiezer-Krein expressed in the following form (see [16,
Ref. 1 and 2]): If E:U) denotes the degree of approximation of an I in C
by polynomials of degree at most n, then

(3.2)

wherejlk) is the kth derivative off Sinwel [13] has improved this estimate
to

If we use (3.3) instead of (3.2) in Shisha's argument and then use his
Theorem 1 thus modified in our earlier work [16], we obtain the following
improved version of our Theorem 3 of [16]: If IE C-K, then for every
positive integer m and for all n ~ m,

where

(
I )m+ 1

O(f,I,m)=2n(II/II+!,u(f,I)) 2Jc Am + 1 •

Substituting for the value of Am + 1 from (3.1) we get
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THEOREM 3.t. Iff E C - K, then for every positive integer m and for all
n~m,

o~ E,,(f) -! ji(f, I)

(
+ 1 )-1

~ n( Ilfll + ! ji(f, I» pm + I(n + 1) : + 1 '

where p = 211..1. ~ 2.

We now obtain our asymptotic result.

THEOREM 3.2. If fEe - K then

o~ E,,(f) -! ji(f, I) ~ C2n3f2(p/(p + 1)r,

as n~ CIJ for some C2 which depends upon f

Proof For n ~ 1, let

(3.4)

(3.5)

m = 0, 1, ..., n.

Note that AAm), 1~ m ~ n, contains all terms of the right side of (3.4)
that involve m. Let m" be the smallest positive integer which minimizes
A,,(m) subject to mE{1,2, ...,n}. We assert that if n>2p then
m" E [(n-2p)/(p+ 1), (n-p+ I)/(p+ 1». To show this, we let A(m)=
A,,(m) - A,,(m - 1), m = 1, 2, ..., n. It is easy to verify that

A(m)=(n!)-l pmm! (n-m)!(m(p+ 1)- (n-p+ 1»).

For convenience, let q = (n - p + 1)/(p + 1). If n> 2p then q> t. In this
case A(m)<O for alII ~m<q and A(m)~O for all q~m~n. The asser
tion is thus established. Since (n - p + 1)/(p + 1) = (n - 2p )/(p + 1) + 1, the
integer m" is unique. Also m"ln ~ I/(p + 1). Now we write

(3.6)

where, as was shown above,

n/(p + 1) - 2p/(p + 1) ~ mn ~ n/(p + 1) - (p - 1)/(p + 1).

We now apply Proposition 2.1 to (3.6) with k n = m", r = I/(p + 1),
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s= -2p/(p+ 1), and t= -(p-l)/(p+ 1) to conclude that (3.6) IS

bounded above and below away from zero as n --+ 00. Since, by (3.4),

for some constant d, the required result (3.5) is established.
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